Nonaqueous-phase-liquid dissolution in variable-aperture fractures: Development of a depth-averaged computational model with comparison to a physical experiment

نویسندگان

  • Russell L. Detwiler
  • Harihar Rajaram
  • Robert J. Glass
چکیده

Dissolution of nonaqueous-phase liquids (NAPLs) from variable-aperture fractures couples fluid flow, transport of the dissolved NAPL, interphase mass transfer, and the corresponding NAPL-water-interface movement. Each of these fundamental processes is controlled by fracture-aperture variability and entrapped-NAPL geometry. We develop a depth-averaged computational model of dissolution that incorporates the fundamental processes that control dissolution at spatial resolutions that include all scales of variability within the flow field. Thus this model does not require empirical descriptions of local mass transfer rates. Furthermore, the depth-averaged approach allows us to simulate dissolution at scales that are larger than the scale of the largest entrapped NAPL blobs. We compare simulation results with an experiment in which we dissolved residual entrapped trichloroethylene (TCE) from a 15.4 30.3 cm, analog, variable-aperture fracture. We measured both fracture aperture and the TCE distribution within the fracture at high spatial resolution using light transmission techniques. Digital images acquired over the duration of the experiment recorded the evolution of the TCE distribution within the fracture and are directly compared with the results of a computational simulation. The evolution with time of the distribution of the entrapped TCE and the total TCE saturation are both predicted well by the dissolution model. These results suggest that detailed parametric studies, employing the depth-averaged dissolution model, can be used to develop a comprehensive understanding of NAPL dissolution in terms of parameters characterizing aperture variability, phase structure, and hydrodynamic conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predicting dissolution patterns in variable aperture fractures: Evaluation of an enhanced depth-averaged computational model

[1] Water-rock interactions within variable aperture fractures can lead to dissolution of fracture surfaces and local alteration of fracture apertures, potentially transforming the transport properties of fractures over time. Because fractures often provide dominant pathways for subsurface flow and transport, developing models that effectively quantify the role of dissolution on changing transp...

متن کامل

Interphase mass transfer in variable aperture fractures: Controlling parameters and proposed constitutive relationships

[1] Interphase mass transfer in variable aperture fractures occurs in many problems where two immiscible fluids are present, such as dissolution of dense nonaqueous phase liquids into groundwater, dissolution of CO2 in deep saline aquifers, and evaporation of trapped water by flowing gas during natural gas production. Typically, one fluid is entrapped by capillary forces and resides in immobili...

متن کامل

Dissolution of entrapped DNAPLs in variable aperture fractures: experimental data and empirical model.

An appreciation of the dissolution from entrapped nonaqueous phase liquids (NAPLs) in fractures is essential as we attempt to understand and predict the fate of NAPLs present in fractured rock systems. Eight long-term dissolution experiments using 1,1,1-trichloroethane and trichloroethylene were conducted in two laboratory-scale dolomitic limestone variable aperture fractures under various cond...

متن کامل

Permeability alteration due to mineral dissolution in partially saturated fractures

[1] During reactive fluid flow in saturated fractures, the relative rates of dissolved mineral transport and local reactions strongly influence local aperture alterations and the resulting changes in fracture permeability (or transmissivity). In the presence of an entrapped residual nonaqueous phase (e.g., CO2 or oil), the spatial distribution of the entrapped phase will influence flow and tran...

متن کامل

Dissolution of dense non-aqueous phase liquids in vertical fractures: effect of finger residuals and dead-end pools.

Understanding the dissolution behavior of dense non-aqueous phase liquids (DNAPLs) in rock fractures under different entrapment conditions is important for remediation activities and any related predictive modeling. This study investigates DNAPL dissolution in variable aperture fractures under two important entrapment configurations, namely, entrapped residual blobs from gravity fingering and p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001